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A concept of neighborhood in complex networks is addressed based on the criterion of the minimal number
of steps to reach other vertices. This amounts to, starting from a given network R1, generating a family of
networks R� ,�=2,3 , . . . such that, the vertices that are � steps apart in the original R1, are only 1 step apart in
R�. The higher order networks are generated using Boolean operations among the adjacency matrices M� that
represent R�. The families originated by the well known linear and the Erdös-Renyi networks are found to be
invariant, in the sense that the spectra of M� are the same, up to finite size effects. A further family originated
from small world network is identified.
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INTRODUCTION

Several properties of complex networks have been ad-
dressed recently, much inspired by the identification of their
relevance in the description of the relations among the indi-
vidual constituents of many systems, which have their origin
from natural to social sciences, telephone and internet to en-
ergy supply, etc. �1–3�. The huge development in this re-
search area came along with the proposition of many param-
eters that might be relevant to the characterization of
properties of networks. The most established quantifiers so
far are the distribution of links n�k�, clustering coefficient C,
mean minimal distance among the nodes �d�, diameter D, the
assortativity degree �4,5�. The evaluation of these and other
indices for actual networks help to characterize them, putting
into some network classes with well defined properties, such
as the small-world �SM� �6�, the scale-free �7�, the Erdös-
Renyi �ER� �or random networks� �8�, etc.

As the number of nodes directly connected to node i is ki,
n�k� characterizes the immediate neighborhood of the net-
work nodes. In this work we explore further neighborhood
properties of a network R, which are related to the distribu-
tion of the number of second, third, ¼, neighbors. The
higher order neighborhoods are characterized with the help
of a family of adjacency matrices �AM� �4�, which in turn are
evaluated within a Boolean operation formalism, as will be
detailed below. After that, we discuss some of the neighbor-
hood properties and also explore some concepts related to
neighborhood invariance.

For the sake of simplicity, we consider herein networks
that are fully connected, i.e., each of its nodes can be reached
from any other one. Two nodes are �th neighbors, or neigh-
bors of order O���, when the minimal path connecting them
has � steps. So, the usual distribution n�k� is based on the
O�1� neighborhood. For a given R, the explicit evaluation of
O��� along the network, �=0,1 ,2 ,3 , . . . promptly indicates
the structure of minimal paths connecting the nodes, where
we consider that any vertex is O�0� neighbor of itself. If R is
finite, the possible values of � are limited by the network

diameter D. The knowledge of O��� classifies uniquely the
neighborhood of a vertex, in the sense that if two vertices are
O��� neighbors, they are not O�j� neighbors for �� j.

For each � we identify all O��� neighbors of R and con-
struct a family of networks R. Each R��R is defined by the
same set of nodes, but edges link only pairs of nodes that are
O��� neighbors in R1�R, so that the family R characterizes
the neighborhood structure of R. On the other hand, each
member R� can be investigated by itself. For instance, we
may consider the links described by R2 and ask which are the
properties of this network, regardless of the fact that it de-
scribes the second neighbors of R. Thus, the investigation of
properties of distinct neighborhoods O��� of R can proceed
by the investigation of the family R.

BOOLEAN FORMALISM FOR HIGHER ORDER
NEIGHBORHOODS

In order to obtain the R�’s, we set up a corresponding
family of AM’s M��M, �� �0,D�: if two sites i and j are ��
neighbors in R, then �M��ij =��,��. M�’s can be successively
evaluated by the systematic use of Boolean �B� operations
�9� among matrices. Note that AM’s M0= I �identity matrix�
and M1, which describes the original network R1, have only
0’s or 1’s as entries for all of its elements. If M1 is applied to
a unitary vector vi, with all but one entry i set to 0, the
resulting vector expresses which vertices are linked to the
vertex i. If we take the usual matrix product of M1 by itself,
the elements �M1

2�rs indicate how many possible two-step
walks along the network, with end points r and s, exist.
Contrary to what happens with M1, M1

2 has many elements
�M1

2�rs�1, indicating multiplicity of two-step paths starting
at r and ending at s. In particular, all elements �M1

2�rr of the
diagonal can have this property, since they count all two-step
walks that start at r, visit any of the vertices s to which r is
linked �i.e.,�M1�rs=1�, and turn back to r. The same interpre-
tation is valid for all usual powers of M1.

As the neighborhood concept does not take path multi-
plicity into account, it is most convenient, for the current

PHYSICAL REVIEW E 73, 046101 �2006�

1539-3755/2006/73�4�/046101�5�/$23.00 ©2006 The American Physical Society046101-1

http://dx.doi.org/10.1103/PhysRevE.73.046101


purposes, to use B operations among matrices. Regarding
�M1�rs=0,1 as B variables, we use B sum, subtraction and
product operations �9�, respectively �,�,�,

0 � 0 = 0, 1 � 0 = 1, 0 � 1 = 1, 1 � 1 = 1;

0 � 0 = 0, 1 � 0 = 1, 0 � 1 = 0, 1 � 1 = 0;

0 � 0 = 0, 1 � 0 = 0, 0 � 1 = 0, 1 � 1 = 1 �1�

to define further B matrices M�. Herein, B matrix operations
are defined by using the usual matrix element operation
rules, replacing the usual sum, subtraction and product
among matrix elements by the corresponding B operations.
To avoid multiplicity of notation we also use �,� and � to
indicate B matrix operations.

As an example, let us consider M2=M1 � M1 and com-
pare it to M1

2. The position of all their zero elements coin-
cides, while M2 can be obtained from M1

2 by collapsing to 1
all of its nonzero elements. In fact, M2 just indicates the
possibility of two-step walks, but not the multiplicity of
walks. Note that M2 does not describe the second order
neighborhood of R, as it includes 1s in the whole main di-
agonal �O�0� neighbo rhood�, as well as between nodes i and
j that, together with a third node k, are connected in a tri-
angle. Such nodes already belong to O�1� and, much as those
in O�0�, should not be present in O�2�. Thus, to obtain M2, it
is necessary to B sum M1 to M2, and subsequently subtract,
from this sum, the contributions I and M1. This leads to

M2 = �M1 � M2� − �I � M1� , �2�

that can be further simplified to

M2 = �I � M1� � M1 − �I � M1� . �3�

Finally, it is possible to proof, e.g., by finite induction,
that Eq. �3� can be generalized for arbitrary value of � by

M� = ��
j=0

�−1

Mj	 � M1 − ��
j=0

�−1

Mj	 . �4�

After obtaining the M�’s, whose Boolean algorithm can be
implemented by bit manipulation to strongly reduce the
amount of disk and CPU storage, several usual indices for
network characterization can be easily worked out. This in-
cludes the average shortest distance between the nodes and
the diameter. So we observe that: �1� For a finite network
with N vertices, there is a large enough �max such that
M��0, "���max. Thus, the diameter D��max. �2� As for
each r ,s pair, �M��rs=1 for only one �M��, one can collapse
in a single matrix

M̂ = 

j=0

�max

jMj �5�

all information on the neighborhood of any pairs of vertices.

Particularly, all pairs �r ,s��O���, satisfy M̂rs=�. To obtain
the average shortest distance for each node r, it is sufficient

to sum all elements of the rth row �or column� of M̂ and
divide by N−1. Taking the average over all nodes we imme-
diately obtain the average shortest distance for the entire net-

work. �3� M̂ can be also used to visualize the structure of
network with the help of color or gray code plots, as shown
in Fig. 4.

Further properties of � neighborhoods can be obtained
within this framework, just by looking at properties of each
R� as an independent network. This includes two very impor-
tant indices which characterize the local landscape of a net-
work: �i� the degree distribution n�k��n1�k�; and �ii� the
clustering coefficient C�n1. They are easily obtained from
M1 by performing: �i� usual sums over matrix rows; and �ii�
line to line multiplication of matrix elements. If the same
procedure is adopted on each M�, corresponding indices
n��k� and C� can be evaluated to characterize the local land-
scape of higher order O���. Note that this introduces no new
indices, just extends to the higher order neighborhood the
same concepts used for characterizing the immediate neigh-
borhood of the nodes.

Local landscapes described by higher order neighbor-
hoods described by R� can be rather distinct from those seen
by the original R1. Take, for instance, the simple Cayley tree,
which is a loopless network. It is an easy matter to see that,
for ��2, R� describe structures full of loops, and where the
network is split into several disjoint subnetworks.

NEIGHBORHOOD INVARIANT PROPERTIES

We can also ask whether, in opposition to the given ex-
ample, there are networks for which some specific property
G �or a set of properties� remains invariant as � changes. If
this is true, it is possible to assign to R a G neighborhood
invariant �NI� property. This invariance of the array of edges
linking the nodes of R expresses insensitivity of local prop-
erties with respect to length scale, provided length is mea-
sured by number of steps along the network. It is distinct
from both the scale-free distribution of vertex connections,
as well as from geometrical scale invariance included in the
construction of the network as, for instance, in the class of
Apollonian networks �13–15�.

To define a NI criterion, it is necessary to identify a rel-
evant network property present in all elements of R �10�.
Though important, n��k� and C� are global indices and may
not provide a sufficiently fine characterization of a network.
We propose to adopt a more precise invariance criterion,
based on the eigenvalue spectrum density ����� of the family
M� �11,12�. Although other criteria can be proposed, this one
is much more sensitive to details of the network than, e.g.,
the global indices just quoted. Also it is worth nothing that
the set of eigenvalues is closely connected to the notion of
neighborhood �see �12��. Nevertheless, as distinct co-spectral
graphs exist, only the complete set of eigenvalues and eigen-
vectors univocally characterizes a network. Thus, even the
spectral criterion may not be an exact one.

The numerical evaluation of the eigenvalue spectra and
spectral density �� has been carried out for several networks.
Exact NI invariance is observed for the linear chain network,
where each vertex interacts �as in system of phonons, tight-
binding electrons �16,17�� only with its two nearest neigh-
bors �nn�. M1,lc has 0’s overall, with exception of 1’s along
the nearest upper and lower diagonals to the matrix main
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diagonal. The other M��,lc� are similar to M1,lc, with two se-
quences of 1’s along the upper and lower � near diagonals.
M1,lc or similar matrices have been used as the starting point
to construct Watts-Strogatz small world networks �6�, by re-
placing some of the original links according to a given re-
wiring probability pw. The spectral density �1 is expressed
analytically by the relation �16–18� �1,lc�����4−�2�−1/2. If
we consider an infinite network, all ��,lc have exactly the
same shape of �1,lc. Indeed, the search for higher order
neighborhoods can be regarded, e.g., in the analysis of tight-
binding systems, as a decimation procedure of half of the
sites along with a renormalization of the hopping integral
�18�. In the finite size cases, ��,lc depends slightly on � and
also on the boundary condition �open or closed� of the net-
work. The spectral invariance means that any �th neighbor-
hood of any nodes �or almost all, in the finite size case�, is
equivalent to that of the first neighborhood, consisting of just
two nodes.

Moving far away from the completely ordered scenario,
we have looked for NI in Erdös-Renyi �ER� random net-
works �8� as, if connections are randomly distributed for R1,
so should they also be for all members of R. However, the
properties of the �ER� networks, hence of �ER, depend on the
connection probability p between any two nodes. If p�1, R1
is split into several disjoint clusters, in opposition to our
assumption. In such cases, �1,ER is constituted by some indi-
vidual peaks superimposed on a shallow background �see
Fig. 1�a��. Though not coincident, ��,ER share the same quali-

tative structure as an increase of the �=0 dominant peak and
a decrease of the other peaks are observed. This is related to
the clustered structure of the network and to the fact that
several clusters are reaching their own diameter.

When p=c /Nz, with z�1, and for large enough c, almost
all nodes are connected in a single cluster, and � obeys the
well known semicircle law �19,20� �sc�����4−�2�1/2. In this
regime, networks usually have a very small diameter, and
invariance can only be noted for a few values of �. For the
average node number �k��0.5, we have clearly found NI, as
�2=�1=�sc, as shown in the Fig. 1�b�. However, for smaller
values of �k�, a clear skewness in the distribution is observed
for �2, despite the semicircle form of �1 �not shown in the
figure�. This result gives a partial answer to a natural and
important question: whether the randomness signature for
ER networks with the occupation probability p�1/Nz, ex-
pressed by the semicircle shape of the spectrum, is also be
present for higher order neighborhoods. It hints at the valid-
ity of the conjecture, yet restricted to a range of values of c
and z.

We have further investigated small-world �SW� networks,
starting both from the nearest-next-neighbor �nnn� and the
above discussed nn linear chains. We have found NI proper-
ties for two pw intervals. In Fig. 2, we show several �� for
very small value of pw, starting from a nn chain: � is split
into two parts: the first one, essentially described by �1,lc,
corresponds to the contribution of unperturbed segments of
the linear chain. This part remains almost invariant for a

FIG. 1. Spectral density �� for the ER network single realizations. �a� N=1000, p=0.05,�=1,2 ,3 ,4 ,5. �b� Four semicircle shaped �solid
lines� �2 for p=c /Nz, when c=68, z=0.9, N=500,1000,3000,3500, which collapse to corresponding �1. Three left-skewed �2 spectra, when
c=32, z=0.92, N=900 �dash�, 1000 �dot� and 1700 �dash-dot�, for which �1 obeys the semicircle law.
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large number of M�, much as exactly observed for ��,lc. The
second part of ��,lc, for 
�
�2, has no well defined shape. It
contains a considerably lower number of eigenvalues, which
increases with �: a number of eigenvalues migrates from the
unperturbed part into it, as the number of vertices that are
affected by the rewiring operation increases with �. The suc-
cessive migration ends up by affecting the whole form of the
spectrum. Of course this behavior depends on pw. If we in-
crease it, a smooth transition on the shape of �1 occurs, mov-
ing towards a pattern with many structures and bands. At the
same time, the subsequent �� shows strong dependence on �.

Starting now with nnn chain, we use the Newman process
of randomly adding links �instead of rewiring�, with prob-
ability p, to obtain networks with SW properties. Taking p in
the range pw�0.15–0.22, we have observed that, as � in-
creases, the spectral density �� evolves towards a very pecu-
liar form, which remains almost invariant for several values
of �, as shown in Fig. 3. This spectrum has its own features,

distinct from those discussed before for the fully ordered and
disordered networks. For the specific case pw=0.21 and
N=1000, we have a large diameter D=15, and the shown
form of the spectra remains invariant for �� �7,10�. For
smaller values of �, the shape changes steadily from struc-
tured shapes similar to those in Fig. 2 into the invariant form.
For larger values of �, finite size effects lead to quite sparse
M�, with a large number of zero eigenvalues: �� evolves to a
� like distribution centered at �=0.

This effect can be graphically illustrated with the help of

the matrix M̂. In Fig. 4 we draw the position of the O���
neighbors for three distinct ranges of �. In the first range
��6, the typical pattern of linear chain is recognized by
diagonal stripes. Isolated islands result from rewiring of
some nn or nnn links, and the shape of � reminds us of Fig.
2. The particular shape in Fig. 3 is associated with roughly
dense matrices when �� �7,10�, and is much more related to
robust structures that emerged from rewired links. For larger
values of �� �11,15�, the links between all pairs of spins
have already been scanned in previous neighborhoods, so
that M�’s become very sparse.

For other values of N, we have observed the same evolu-
tion. For instance, when N=1500 and 2000, the shape lasts
almost invariant for more generations, respectively
�� �8,12� and �11,16�, indicating that this behavior can be
more robust as N increases. For pw larger than the range
given above, this persistence in the form is not observed. For
smaller values of pw the spectra changes very slowly as
shown in Fig. 2. In such cases, finite size effects set in prior
than the form shown in Fig. 3.

To summarize, we have investigated higher order neigh-
borhood and NI of networks. The first issue has been done by
a systematic use of B operations and the definition of an AM
family. The formalism we use allows to uniquely assign links
between all pairs of nodes according to the minimal number
� of steps required to connect them walking on the given
network. This defines a set of � neighborhood of the net-
work, each one of them being characterized as a network in
its own. Further, we considered a concept of NI based on the
properties of the the spectral density �. Finally, we explored
well-known networks, showing that NI can be exactly found
for the linear chain, and approximately, for the Erdös-Renyi
network and Watts-Strogatz small-world networks. In the
later cases, NI is observed for particular intervals of, respec-
tively, connection probability p and rewiring probability pw.

FIG. 2. Plots of the spectra �	� of the matrices
M� ,�=1,3 ,5 ,7 ,9, for a Watts-Strogatz small-world network start-
ing from a nearest neighbor linear chain and pw=0.02.

FIG. 3. Almost invariant spectra �	� of the matrices
M� ,�=7–10, for a Watts-Strogatz small network starting from a
next-nearest neighbor linear chain and pw=0.2.

FIG. 4. For the same Watts-Strogatz small network of Fig. 4,
graphical illustration of distribution of O��� neighborhoods:
�� �1,6� , �7,10� , �11,15� for �a�, �b� and �c� respectively.
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Though quite distinct, all of them share a certain homogene-
ity character. We failed to find NI for Barabasi’s scale-free as
well as Apollonian networks, where nodes with quite distinct
connections coexist. This suggests that NI may not be ob-
served for highly inhomogeneous networks. Moreover, it
shows that NI is not equivalent to other concepts of scale and
geometrical invariance that are used to characterized other

networks. This proposed framework may be useful to char-
acterize actual networks.
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